Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

M35012-XXXSP, M35013-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

DESCRIPTION

The M35012-XXXSP and M35013-XXXSP are TV screen display control IC which can be used to display information such as program schedules, the date and messages on the TV screen.

The differences among M35012-XXXSP and M35013-XXXSP are noted below.

The descriptions that follow describe the M35013-XXXSP unless otherwise noted.

Type name	M35012-XXXSP	M35013-XXXSP
Characters available	256	128
Data input	16 bits serial input	8 bits serial input
Exclusion function	Exclusion 1 and 2 function	Exclusion 1 function
CONT7F function	Normal/FF ₁₆ writing mode	Normal/7F ₁₆ writing mode

For M35013-001SP and M35012-001SP that are standard ROM version of M35013-XXXSP and M35012-XXXSP respectively, the I/O polarity of pin and the character pattern are also mentioned.

FEATURES

- Screen composition 24 columns × 10 lines
 Number of characters displayed 240 (Max.)
 Character composition 12 × 18 dot matrix
 Characters available M35013-XXXSP 128 characters M35012-XXXSP 256 characters
 Character sizes available 4 (horizontal) × 4 (vertical)

Duty : 25%, 50%, or 75%

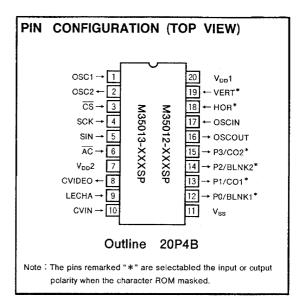
- Data input
 - M35013-XXXSP······ By the 8-bit serial input function M35012-XXXSP····· By the 16-bit serial input function
- Coloring

Background coforing (composite video signal)

Blanking

Total blanking (14 × 18 dots)

Border size blanking


Character size blanking

Synchronization signal

Composite synchronization signal generation (PAL, NTSC, M-PAL)

- Synchronized separation circuit-------Built-in
- 4 output ports (2 digital lines)
- Oscillation stop function

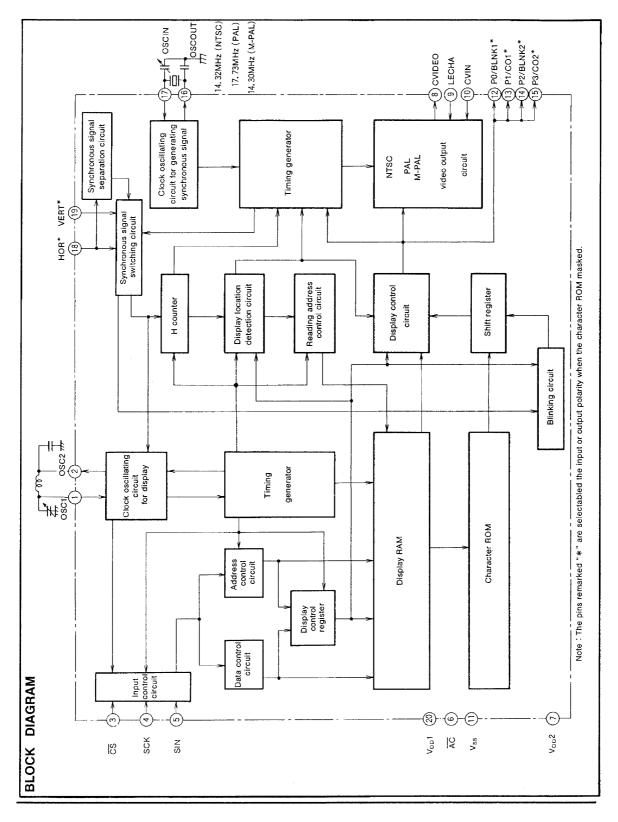
Be possible to stop the oscillation for display and for synchronized signal generation

•	Exclusion function
	M35013-XXXSP1
	M35012-XXXSP2

· Reversed character display function

APPLICATION

TV, VCR, Camcorder


SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

PIN DESCRIPTION

Pin Number	Symbol	Pin name	Input /Output	Function
1	OSC1	Pins for attachment of	Input	There are the pins for attaching an external display oscillator circuit. The standard oscillation fre-
2	OSC2	· · ·		quency is approximately 7MHz. This oscillation frequency determines the horizontal position of the display on the TV screen and the width of the characters.
3	CS	Chip select input	Input	This is the chip select pin, and when serial data transmission is being carried out, it goes to "L". Hysteresis input. Includes built-in pull-up resistor.
4	SCK Serial clock input Input		Input	When $\overline{\text{CS}}$ pin is "L", SIN serial data is taken in when SCK rises. Hysteresis input. Built-in pull-up resistor is included.
5	SIN	Serial data input	Input	This is the pin for serial input of data and addresses for the display control register and the display data memory. Hysteresis input. Inculdes built-in pull-up resistor.
6	ĀC	Auto-clear input	Input	When "L", this pin resets the internal IC circuit. Hysteresis input. Includes built-in pull-up resistor.
7	V _{DD} 2	Power pin	-	Please connect to +5V with the analog circuit power pin.
8	CVIDEO	Composite video sig- nal output	Output	This is the output pin for composite video signals. It outputs $2V_{P,P}$ composite video signals. In superimpose mode, character output etc. is superimposed on the external composite video signals from CVIN.
9	LECHA	Character level input	Input	This is the input pin which determines the "white" character color level in the composite video signal.
10	CVIN	Composite video sig- nal input	Input	This is the input pin for external composite video signals. In superimpose mode, character output etc. is superimposed on these external composite video signals.
11	V _{ss}	Earthing pin	_	Please connect to GND using circuit earthing pin.
12	P0	Port P0 output	Output	This pin can be toggled between port pin output and BLNK1* (character background) signal output. Polarity can be selected when the character ROM is masked.
13	P1	Port P1 output	Output	This pin can be toggled between port pin output and CO1* (character) signal output. Polarity can be selected when the character ROM is masked.
14	P2	Port P2 output	Output	This pin can be toggled between port pin output and BLNK2* (character background) signal output. Polarity can be selected when the character ROM is masked.
15	P3	Port P3 output	Output	This pin can be toggled between port pin output and CO2* (character) signal output. Polarity can be selected when the character ROM is masked.
16	OSCOUT	Pins for attachment of	Output	These are the pins for attaching an external oscillator circuit for generating the synchronization sig-
17	OSCIN	external oscillator cir- cult for synchronization signal generation	Input	nal. An oscillation of 14.32MHz is needed for NTSC, 17.73MHz is needed for PAL and 14.30MHz is needed for M-PAL.
18	HOR*	Horizontal synchro- nization signal input	Input	This pin inputs the horizontal synchronization signal. Hysteresis input. Polarity can be selected when the character ROM is masked.
19	VERT*	Vertical synchroniza- tion signal input	Input	This pin inputs the vertical synchronization signal. Hysteresis input. Polarity can be selected when the character ROM is masked.
20	V _{DD} 1	Power pin	_	Please connect to +5V with the digital circuit power pin.

Note $\,:\,\,$ The pins remarked "*" are selectabled the input or output polarity when the character ROM masked.

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

MEMORY CONSTITUTION

Address 00_{16} to EF₁₆ are assigned to the display RAM, address F0₁₆ to F8₁₆ are assigned to the display control registers.

Bit Address	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	Remarks
0016	EXP	Ce	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	
	Expansion bit Character code								Display RAM
EF ₁₆	EXP	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	
F0 ₁₆	PTD 3	PTD 2	PTD 1	PTD 0	PTC 3	PTC 2	PTC 1	PTC 0	Port output specify
F1 ₁₆	TBASE 1	TBASE 0	HP 5	HP 4	HP 3	HP 2	HP 1	HP 0	Horizontal display start position specify
F2 ₁₆	INT/NON	SEPV	VP 5	VP 4	VP 3	VP 2	VP 1	VP 0	Vertical display start position specify
F3 ₁₆	VSZ 21	VSZ 20	VSZ 11	VSZ 10	HSZ 21	HSZ 20	HSZ 11	HSZ 10	Character size specify
F4 ₁₆	DSP 7	DSP 6	DSP 5	DSP 4	DSP 3	DSP 2	DSP 1	DSP 0	Display mode specify
F5 ₁₆	N/P	TEST 2	TEST 1	TEST 0	EXP 1	EXP 0	DSP 9	DSP 8	Expansion
F6 ₁₆	EQP	PAL H	MPAL	ALL 24	FSC	BLINK 2	BLINK 1	BLINK 0	Blinking specify and so on
F7 ₁₆	BLKHF	ВВ	BG	BR	LEVEL 0	PHASE 2	PHASE 1	PHASE 0	Raster color specify
F8 ₁₆	DSP ON	CONT7F	STOP	STOP IN	RAM ERS	EX	BLK 1	BLK 0	Control display

Fig. 1 Memory constitution (M35013-XXXSP)

At the M35013-XXXSP

The internal circuit is reset and all display control registers (address F0₁₆ to F8₁₆) are set to "0" and display RAM (address 00₁₆ to EF₁₆) are set to "7F₁₆" when the \overline{AC} pin level is "L". The memory constitution is shown in Figure 1.

At the M35012-XXXSP

The internal circuit is reset and all display control registers (address F0₁₆ to F8₁₆) are set to "0" and display RAM (address 00₁₆ to EF₁₆) are set to "FF₁₆" when the \overline{AC} pin level is "L". The memory constitution is shown in Figure 2.

Bit Address	DAF	DAE	DAD	DAC	DAB	DAA	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	Remarks
0016	0	0	0	0	0	REV	BLINK	0	C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co	
		į		i	į	Reversed character	Blinking	i			Cha	aracter	code				Display RAM
EF ₁₆	0	0	0	0	0	REV	BLINK	0	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	
F0 ₁₆	0	0	0	0	0	0	0	0	PTD3	PTD2	PTD1	PTD0	РТС3	PTC2	PTC1	PTC0	Port output specify
F1 ₁₆	0	0	0	0	0	0	0	0	TBASI	TBASO	HP5	HP4	НР3	HP2	HP1	HP0	Horizontal display start position specify
F2 ₁₆	0	0	0	0	0	0	0	0	INT/ NON	SEPV	VP5	VP4	VP3	VP2	VPI	VP0	Vertical display start position specify
F3 ₁₆	0	0	0	0	0	0	0	0	VSZ 21	vsz 20	VSZ 11	VSZ 10	HSZ 21	HSZ 20	HSZ 11	HSZ 10	Character size specify
F4 ₁₆	0	0	0	0	0	0	0	0	DSP7	DSP6	DSP5	DSP4	DSP3	DSP2	DSP1	DSP0	Display mode specify
F5 ₁₆	0	0	0	0	0	0	0	0	N/P	TEST 2	TEST 1	TEST 0	EXP1	EXP0	DSP9	DSP8	Expansion
F6 ₁₆	0	0	0	0	0	0	0	0	EQP	PALH	MPAL	ALL 24	FSC	BLINK 2	BLINK 1	BLINK 0	Blinking specify and so on
F7 ₁₆	0	0	0	0	0	0	0	0	BLKHF	BB	BG	BR	LEVEL 0	PHASE 2	PHASE 1	PHASE 0	Raster color specify
F8 ₁₆	0	0	0	0	0	0	0	0	DSPON	CONT 7F	STOP 1	STOP IN	RAMERS	EX	BLK1	BLK0	Control display

Fig. 2 Memory constitution (M35012-XXXSP) **DA8 to DAF of the display control registers (addresses F0₁₆ to F8₁₆) are set to "0".

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

SCREEN CONSTITUTION

The screen lines and rows are determined from each address of the display RAM. The screen consitution is shown in Figure 3.

							1					,				,						,		
Row	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	0016	0116	0216	0316	0416	0516	0616	0716	0816	0916	0A ₁₆	0B ₁₆	0C ₁₆	0D ₁₆	0E ₁₆	0F ₁₆	1016	1116	1216	1316	1416	1516	1616	1716
2	1816	1916	1A ₁₆	1B;6	1C ₁₆	1D ₁₆	1E ₁₆	1F ₁₆	2016	2116	2216	2316	2416	2516	2616	2716	2816	2916	2A ₁₆	2B ₁₆	2C ₁₆	2D ₁₆	2E ₁₆	2F ₁₆
3	3016	3116	3216	3316	3416	3516	3616	3716	3816	3916	3A ₁₆	3B ₁₆	3C ₁₆	3D ₁₆	3E ₁₆	3F ₁₆	4016	4116	4216	4316	4416	4516	4616	4716
4	4816	4916	4A ₁₆	4B ₁₆	4C16	4D ₁₆	4E ₁₆	4F16	50 ₁₆	5116	5216	5316	5416	5516	5616	5716	58 ₁₆	5916	5A ₁₆	5B ₁₆	5C ₁₆	5D ₁₆	5E ₁₆	5F16
5	6016	6116	6216	63 ₁₆	6416	6516	66 ₁₆	6716	6816	6916	6A ₁₆	6B ₁₆	6C ₁₆	6D ₁₆	6E ₁₆	6F ₁₆	7016	7116	72 ₁₆	7316	7416	7516	7616	7716
6	7816	7916	7A ₁₆	7B ₁₆	7C ₁₆	7D ₁₆	7E ₁₆	7F ₁₆	8016	8116	8216	8316	8416	8516	8616	87 ₁₆	8816	8916	8A ₁₆	8B ₁₆	8C ₁₆	8D ₁₆	8E ₁₆	8F ₁₆
7	9016	9116	9216	9316	9416	9516	9616	9716	9816	9916	9A ₁₆	9816	9C ₁₆	9D ₁₆	9E ₁₆	9F ₁₆	A016	A1 ₁₆	A2 ₁₆	A316	A416	A516	A6 ₁₆	A716
8	A816	A9 ₁₆	AA ₁₆	AB ₁₆	AC ₁₆	AD ₁₆	AE ₁₆	AF ₁₆	B0 ₁₆	B1 ₁₆	B2 ₁₆	B3 ₁₆	B416	B516	B6 ₁₆	B7 ₁₆	B816	B9 ₁₆	BA ₁₆	BB ₁₆	BC ₁₆	BD ₁₆	BE ₁₆	BF ₁₆
9	C0 ₁₆	C116	C2 ₁₆	C3 ₁₆	C4 ₁₆	C5 ₁₆	C616	C716	C8 ₁₆	C9 ₁₆	CA ₁₆	CB ₁₆	CC16	CD ₁₆	CE ₁₆	CF16	D0 ₁₆	D1 ₁₆	D2 ₁₆	D3 ₁₆	D416	D516	D6 ₁₆	D7 ₁₆
10	D816	D9 ₁₆	DA ₁₆	DB ₁₆	DC16	DD ₁₆	DE ₁₆	DF ₁₆	E0 ₁₆	E1 ₁₆	E216	E3 ₁₆	E416	E516	€616	E7 ₁₆	E8 ₁₆	E9 ₁₆	EA16	EB ₁₆	EC16	ED ₁₆	EE16	EF16

The hexadecimal numbers in the boxes show the display RAM address.

Fig. 3 Screen constitution

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

REGISTERS DESCRIPTION

(1) Address F0₁₆

DA	Destates		Contents	Remarks
DA	Register	Status	Function	- Kemarks
0	PTC0	0	P0 output (port P0)	
	PICO	1	BLNK1* output	
1	PTC1	0	P1 output (port P1)	
'	PICI	1	CO1* output	Port output control
2	PTC2	0	P2 output (port P2)	Port output control
2	P1C2	1	BLNK2* output	
3	PTC3	0	P3 output (port P3)	
٦	PICS	1	CO2* output	
4	PTD0	0	P0 output "L"	
	FIDO	1	P0 output "H"	
5	PTD1	0	P1 output "L"	
, ,	FIDI	1	P1 output "H"	Port data control
6	PTD2	0	P2 output "L"	For data control
U	FIDZ	1	P2 output "H"	
7	PTD3	0	P3 output "L"	
Ĺ	FIDO	1	P3 output "H"	

Note: The mark ○ around the status value means the reset status by the "L" level is input to AC pin.

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(2) Address F1₁₆

DA	D i at		Contents	Remarks			
DA	Register	Status	Function	nemaiks			
	HP0	0	If HS is the horizontal display start location,	Horizontal display start location is			
0	(LSB)	1	$HS = T \times (4 \sum_{n=0}^{5} 2^{n} HP_{n} + N).$	specified using the 6 bits from HP5 to HP0.			
1	1104	0	$HS = 1 \times (42.2^{\circ} HP_n + N).$ n=0	Note: HP5 to $0 = (000000_2)$ and (000001_2) setting is forbidden.			
1	HP1	1	T. The application made at applicate OCC1 OCC2				
2	HP2	0	T: The oscillation cycle of oscillator OSC1, OSC2				
2	HP2	1					
3	HP3	0	HSZ11 HSZ10 N				
3	HES	1	HSZ21 HSZ20 9				
4	HP4	0	0 1 10 11				
*	HP4	1	1 1 12				
5	HP5 (MSB)	0					
3	(MISB)	1					
6	TBASE0	0	No correction for the synchronous error by a noise.	The synchronized signal correction setting.			
	IDAGEO	1	Correction for the synchronous error by a noise.				
7	TBASE1	0	No correction for a lack of the synchronized signal.				
	IDAGET	1	Correction for a lack of the synchronized signal.				

Note : The mark ○ around the status value means the reset status by the "L" level is input to AC pin.

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(3) Address F2₁₆

DA			Contents	
DA	Register	Status	Function	Remarks
0	VP0	0		The vertical start location is speci-
U	(LSB)	1	If VS is the vertical display start location,	fied using the 6 bits from VP5 to VP0.
1	VP1	0	$VS = H \times (4 \sum_{n=0}^{5} 2^{n} VP_{n} + 3).$	
1	VPI	1	" •	
2	VP2	0	H: Cycle with the horizontal synchronizing pulse	
	VPZ	1	HOR*	
3	VP3	0	l H	
	VF3	1	J. vs	
4	VP4	0		
-	VI-4	1	Character	
5	VP5	0	displaying area	
	(MSB)	1		
6	SEPV	0	Input both horizontal synchronization signal and vertical synchronization signal.	The contents of synchronization sig- nal input in superimpose display is
	JEI V	1	Input the horizontal (composite) synchronization signal only.	altered.
7	INT/NON	0	Interlace	Scanning lines control (only in internal synchronization)
,		1	Non-interlace	nai syriomonization/

Note : The mark ○ around the status value means the reset status by the "L" level is input to \overline{AC} pin.

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(4) Address F3₁₆

DA	Decistes		Contents	
UA	Register	Status	Function	Remarks
		0		Character size setting in the hori-
0	HSZ10	1	HSZ10 0 1	zontal direction for the first line.
		0	0 1T/1dot 2T/1dot	
1	HSZ11	1	1 3T/1dot 4T/1dot	
		0		Character size setting in the hori-
2	HSZ20	1	HSZ20 0 1	zontal direction for the 2nd line to 10th line.
		0	0 1T/1dot 2T/1dot	
3	HSZ21	1	1 3T/1dot 4T/1dot	
_		0		Character size setting in the vertical
4	VSZ10	1	VSZ10 0 1	direction for the first line.
		0	0 1H/1dot 2H/1dot	
5	VSZ11	1	1 3H/1dot 4H/1dot	
		0		Character size setting in the vertical
6	VSZ20	1	VSZ20 0 1	direction for the 2nd line to 10th line.
_		0	0 1H/1dot 2H/1dot 1 3H/1dot 4H/1dot	
7	VSZ21	1		

Note: The mark \bigcirc arround the status value means the reset status by the "L" level is input to \overline{AC} pin.

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(5) Address F4₁₆

DA	Daminton		Contents	İ					
DA	Register	Status	Function			Rem	ıarks		
0	DSP0	0	Line 1 is in the display mode specified by BLK0 and BLK1.	1			e each controlled		
	D370	1	Line 1 is in a different display mode.		BLK1 BLK0 DSPn Display mode				
1	5004	0	Line 2 is in the display mode specified by BLK0 and BLK1.		_	0	for line n Border (Note1)		
Į.	DSP1	1	Line 2 is in a different display mode.	0	0	1	Character		
_		0	Line 3 is in the display mode specified by BLK0 and BLK1.	0	1	0	Character		
2	DSP2	1	Line 3 is in a different display mode.	Ī		1	Border		
•		0	Line 4 is in the display mode specified by BLK0 and BLK1.	1	0	0	Border Matrix-outline		
3	DSP3	1	Line 4 is in a different display mode.		1	0	Matrix-outline		
		0	Line 5 is in the display mode specified by BLK0 and BLK1.	1		1	Character		
4	DSP4	1	Line 5 is in a different display mode.	DSPn to DS	SPn in the generic name for DSP0 DSP9				
-		0	Line 6 is in the display mode specified by BLK0 and BLK1.				ay mode for line n		
5	DSP5	1	Line 6 is in a different display mode.	lines,	the di		and for the other mode is the char-		
	Popo	0	Line 7 is in the display mode specified by BLK0 and BLK1.	1	OSPn (to 9) are "0", the		
6	DSP6	1	Line 7 is in a different display mode.	OFF.			all line blanking		
7	5007	0	Line 8 is in the display mode specified by BLK0 and BLK1.	Note 2 to add			DSP9 are assigned		
7	7 DSP7		Line 8 is in a different display mode.						

Note : The mark ○ around the status value means the reset status by the "L" level is input to AC pin.

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(6) Address F5₁₆

DA	Register		Contents	
DA	riegister	Status	Function	Remarks
•		0	Line 9 is in the display mode specified by BLK0 and BLK1.	See the remarks of address F4 ₁₆ .
0	DSP8	1	Line 9 is in the different display mode.	
		0	Line 10 is in the display mode specified by BLK0 and BLK1.	
1	DSP9	1	Line 10 is in the different display mode.	
2	EXP0	0	EXPO	For M35013-XXXSP, these registers are used to extend the function of
2	LAFO	1	EXP1 0 1 Normal character Reversed character	the EXP bits in the addresses 0_{16} to EF_{16} of the display RAM.
3	EXP1	0	Blinking (No blinking) Normal character Reversed character	For M35012-XXXSP, these registers are used to extend the function of the REV bits and BLINK bits in the
J	EAFI	1	Exclusion Exclusion	addresses 0_{16} to EF_{16} of the display RAM.
4	TEST0	0	TEST0 to TEST2=(000₂)→Normal display	
4	IESTO	1	(010₂)→Space display	
5	TEOTA	0		
5	TEST1	1		
6		0		
О	TEST2	1		
7	N/P	0	MPAL 0 1	Synchronization signal is selected
,	N/P	1	0 NTSC M-PAL 1 PAL Do not use	with this register and MPAL register (address F6 ₁₈).

Note: The mark \bigcirc around the status value means the reset status by "L" level is input to \overrightarrow{AC} pin.

MITSUBISHI MICROCOMPUTERS

M35012-XXXSP,M35013-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(7) Address F6₁₆

	Basista		Contents	Remarks
DA	Register	Status	Function	Remarks
	5111111	0		Blinking duty ratio can be altered.
0	BLINK0	1	BLINK0 0 1	
1	DI INIKA	0	0 Blinking OFF Duty 25% 1 Duty 50% Duty 75%	
	BLINK1	1		
		0	Division of vertical synchronization signal into 1/64. Cycle approximately 1 second.	Blinking cycle can be altered.
2	BLINK2	1	Division of vertical synchronization signal into 1/32. Cycle approximately 0.5 second.	
		0	OSCIN oscillation frequency 4 × fsc	Oscillation frequency setting for
3	FSC	1	OSCIN oscillation frequency 2 × fsc	OSCIN terminal (only effective with NTSC).
4	ALL24	0	Blanking with all 24 characters in matrix-outline size.	Horizontal display range can be altered when all characters are in
4	ALL24	1	Horizontal display period blanked.	matrix-outline size (Note 2).
_	MPAL	0	MPAL 0 1	Synchronization signal is selected with this register and N/P register
5	MPAL	1	0 NTSC M-PAL 1 PAL Do not use	(address F5 ₁₆).
	BALL	0	Interlace 1 Noninterlace 1	In NTSC mode, status is "0".
6	PALH	1	Interlace 2 Noninterlace 2	
7	EQP	0	Not include the equivalent pulse	Setting the contents of composite synchronized signal at non-interlace.
/	EQP	1	Include the equivalent pulse	synomonized aighar at non-interface.

Notes 1. The mark \bigcirc around the status value means the reset status by the "L" level is input to \overline{AC} pin.

2. Fix to "0" this register at external synchronous.

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(8) Address F7₁₆

D.4	Berinter					C	Contents		Remarks
DA	Register	Status					Function		Hemarks
	DUAGEO	0		PHASE2	PHASE1	PHASE0	NTSC Phase angle(color)	PAL phase angle(cotor)	Raster color setting. Coloring by composite video signals means that
0	PHASE0	1		0	0	0	(Black)	(Black)	the phase angle of the background
		<u>'</u>		0	0	1	π/2 (rad.)	±π/2 (rad.)	color signals for the color burst sig-
		0		0	1	0	7π/4 (rad.)	∓π/4 (rad.)	nals can be varied. The angle can
1	PHASE1			0	1	1	same phase	same phase	be varied in units of $\pi/4$ rad.
		1		1	0	0	π (rad.)	±π (rad.)	This differs from coloring by RGB
				1	0	1	3π/4 (rad.)	±3π/4 (rad.)	output.
		0		1	1	0	3π/2 (rad.)	∓π/2 (rad.)	
2	PHASE2	1		1	1	1	(White)	(White)	
3	LEVEL0	0		ernal bias OFF					Generation of composite video sig- nal bias potential
		1	Int	ernal b	ias ON				
		0		ВВ	BG	BR	NTSC phase angle(color)	PAL phase angle(color)	Character background color setting.
4	BR			0	0	0	(Black)	(Black)	
		. 1		0	0	1	π/2 (rad)	±π/2 (rad.)	
		0		0	1	0	7π/4 (rad.)	∓π/4 (rad.)	
5	BG			0	1	1	same phase	same phase	
-		1		1	0	0	π (rad.)	±π (rad.)	
	_			1	0	1	3π/4 (rad.)	±3π/4 (rad.)	
		0		1	1	0	3π/2 (rad.)	∓π/2 (rad)	
6	BB	1		1	1	1	(White)	(White)	
7	BLKHF	0	The	e halfto	ne dis	playing	"OFF" in superi	mpose	This register is available in the superimpose displaying only.
,	BERTIF	1	The	e halfto	ne dis	playing	"ON" in superin	npose	perimpose displaying only.

Note : The mark ○ around the status value means the reset status by the "L" level is input to AC pin.

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(9) Address F8₁₆

			Contents			
DA	Register	Status	Function	Remarks		
		0		Display mode variable		
0	BLK0	1	BLK0 0 1			
1	D1 144	0	0 Blanking OFF Character size 1 Border size Matrix-outline size			
1	BLK1	1				
2	FV	0	External synchronization	Synchronization signal switching		
2	EX	1	Internal synchronization			
		0	RAM not erased	This register does not have the function as register. If RAM is eras		
3	3 RAMERS 1		RAM erased	continuously, set DSPON (address F8 ₁₆) to "0".		
	OTO DIN	0	Oscillaion of OSCIN, OSCOUT for synchronization signals.	OSCIN oscillation stop		
4	STOPIN	1	Stop oscillation of OSCIN, OSCOUT, for synchronization signals.	(Note 1)		
F	STOP1	0	Oscillation of OSC1, OSC2 for display.	OSC1 and OSC2 oscillation switching. To stop the oscillation, set CS		
5	STOPT	1	Stop the oscillation OSC1, OSC2 for display.	pin to "H" level and DSPON (address F8 ₁₆) to "0".		
6	0		Normal write mode.	Usually "0" fix. Writing mode of the serial data input switching.		
	CONT7F	1	Continuously writing mode (character code 7F ₁₆)*	(Note 2) For M35012-XXXSP, continuously writing mode (character code FF ₁₆).		
7	DSPON	0	Display OFF	Display can be altered.		
Ĺ′	DOFON	1	Display ON			

Notes 1. When crystal oscillation move from external synchronous to internal synchronous at stop state (STOPIN=1), leave the crystal oscillation state (STOPIN=0) before 1V (vertical synchronous NTSC, M-PAL about 16.7ms, PAL 20ms) or more.

2. The mark ○ around the status value means the reset status by the "L" level is input to AC pin.

M35012-XXXSP,M35013-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

DISPLAY FORMS

M3501.3-XXXSP has the following five display forms as the blanking function, when CO1 *, BLNK1 *, CO2 *, and BLNK2* are output.

(1) Blanking OFF : Blanking output signal (BLNK*) is cut off.

: Blanking same as the character (2) Character size size.

(3) Border size : Blanking the background as a size from character.

(4) Matrix-outline size: Blanking the background as a size from all character font size.

This display format allows each line (from the first line to the tenth line) to be controlled independently, so that two kinds of display formats can be combined on the same screen.

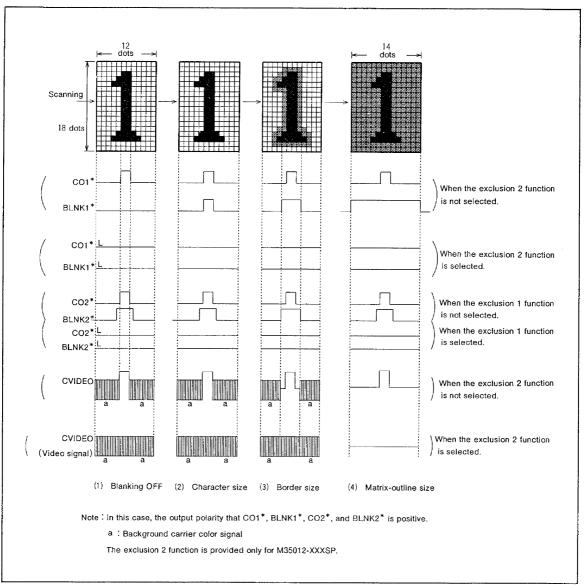


Fig. 4 Display forms at each display mode

MITSUBISHI MICROCOMPUTERS

M35012-XXXSP,M35013-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

EXCLUSION FUNCTION

For M35013-XXXSP, the function expansion that is set with the EXP1 and EXP0 registers (DA3 and DA2 of address F5₁₆) is performed when "1" is set to DA7 of display RAM (EXP bit).

Table 1 Display form of M35013-XXXSP

Reg	ister	District
EXP1	EXP0	Display form
0	0	Normal character + Blinking
0	1	Reversed character (no blinking)
1	0	Normal character + Exclusion 1
1	1	Reversed character + Exclusion 1

For M35012-XXXSP, the displays shown in table 2 are available with the combination of DA9 (BLINK bit), DAA (REV bit) of display RAM and EXP1, EXP0 register (DA3 and DA2 of address $F5_{16}$).

When the exclusion 1 function is selected, CO2 * and BLNK2 * side are not displayed.

When the exclusion 2 function is selected, CO1*, BLNK1*, and video signal side are not displayed.

The character of exclusion 2 and exclusion 1 are prohibited to be next to each other horizontally. Insert "FF₁₆" of character between the character of exclusion 2 and that of exclusion 1.

Table 2 Display form of M35012-XXXSP

Reg	ister	R.	AM	Diaday
EXP1	EXP0	REV	BLINK	Display form
		0	0	Normal character
0	0	0	1	Normal character + Blinking
0	U	1	0	Reversed character
		1	1	Reversed character + Blinking
		0	0	Normal character + Exclusion 2
0	•	0	1	Normal character + Blinking + Exclusion 1
U	,	1	0	Reversed character + Exclusion 2
		1	1	Reversed character + Blinking + Exclusion 1
		0	0	Normal character
1	0	0	1	Normal character + Exclusion 1
1	0	1	0	Reversed character
		1	1	Reversed character + Exclusion 1
		0	0	Normal character
		0	1	Normal character + Blinking
1		1	0	Normal character + Exclusion 1
		1	1	Normal character + Blinking + Exclusion 1

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

The figure 5 and 6 show the display examples using ports P0 to P3 (digital output).

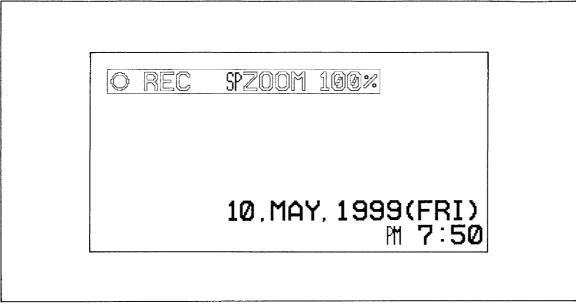


Fig. 5 Display example using ports P0(BLNK1*) and P1(CO1*) (display line)

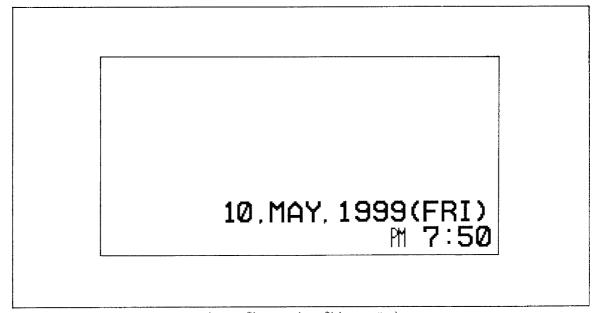


Fig. 6 Display example using ports P2(BLNK2*) and P3(CO2*) (record line)

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

DATA INPUT EXAMPLE

Data of display RAM and display control registers can be set by the serial input function. Example of data setting at M35013-XXXSP is shown in Figure 7, and example of data setting at M35012-XXXSP is shown in Figure 8.

No.	Memor	y Contents	DA	DA	DA	DA	DA	DA	DA	DA
INO.	Address/Data	Addition	7	6	5	4	3	2	1	0
1	Address F8 ₁₆		1	1	1	1	1	0	0	0
2	Data (F8 ₁₆)	Display OFF	0	0	0	0	1	×	×	×
3	Data (00 ₁₆)	Setting to display	EXP	C ₆	C ₅	C4	C ₃	C ₂	C ₁	C ₀
4	Data (01 ₁₆)	to EF ₁₆) and registers (addresses FO ₁₆) to F8 ₁₆)	EXP	C ₆	C ₅	C4	C ₃	C2	C ₁	C ₀
, 					, 	1		1	1	1
242	Data (EF ₁₆)	-	EXP	Св	C ₅	C4	C ₃	C ₂	C ₁	C ₀
243	Data (F0 ₁₆)		PTD 3	PTD 2	PTD 1	PTD 0	PTC 3	PTC 2	PTC 1	PTC 0
244	Data (F1 ₁₆)		0	0	HP 5	HP 4	HP 3	HP 2	HP 1	HP 0
245	Data (F2 ₁₆)		0	0	VP 5	VP 4	VP 3	VP 2	VP 1	VP 0
246	Data (F3 ₁₆)	-	VSZ 21	VSZ 20	vsz 11	VSZ 10	HSZ 21	HSZ 20	HSZ 11	HSZ 10
247	Data (F4 ₁₆)		DSP 7	DSP 6	DSP 5	DSP 4	DSP 3	DSP 2	DSP 1	DSP 0
248	Data (F5 ₁₆)		Ñ/P	0	0	0	EXP 1	EXP 0	DSP 9	DSP 8
249	Data (F6 ₁₆)		EQP	PAL H	MPAL	ALL 24	FSC	BLINK 2	BLINK 1	BLINK 0
250	Data (F7 ₁₆)		BLKHF	ВВ	BG	BR	1	PHASE 2	PHASE 1	PHASE 0
251	Data (F8 ₁₆)	Display ON	1	0	0	0	0	EX	BLK 1	BLK 0

Fig. 7 Example of data setting by the serial input function (M35013-XXXSP)

[Memory	Contents			Ι			L			Ī	T			T .			Γ
No.	Address/Data	Addition	DAF	DAE	DAD	DAC	DAB	DAA	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
1	Address F8 ₁₆	Display OFF	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0
2	Data (F8 ₁₆)	Display OFF	0	0	0	0	0	0	0	0	0	0	0	0	1	×	×	×
3	Data (00 ₁₆)		0	0	0	0	0	REV	BLINK	0	C ₇	Cs	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀
4	Data (01 ₁₆)		0	0	0	0	0	REV	BLINK	0	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀
								<u> </u>			 						•	
242	Data (EF ₁₆)	Setting to display	0	G	0	0	0	REV	BLINK	0	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀
243	Data (F0 ₁₆)	RAM (address 00 ₁₆ to EF ₁₆) and regis- ters (addresses F0 ₁₆	0	0	0	0	0	0	0	0	PTO 3	PTD 2	PTD 1	PTD 0	PTC 3	PTC 2	PTC 1	PTC 0
244	Data (F1 ₁₆)	to F8 ₁₆)	0	0	0	0	0	0	0	0	0	0	HP 5	HP 4	HP 3	HP 2	HP 1	HP 0
245	Data (F2 ₁₆)		0	0	0	0	0	0	a	0	0	0	VP 5	VP 4	VP 3	VP 2	VP 1	VP 0
246	Data (F3 ₁₆)		0	0	0	0	0	0	0	0	VSZ 21	vsz 20	vsz 11	vsz 10	HSZ 21	HSZ 20	HSZ 11	HSZ 10
247	Data (F4 ₁₆)		0	0	0	0	0	0	0	0	DSP 7	DSP 6	DSP 5	DSP 4	DSP 3	DSP 2	DSP 1	DSP 0
248	Data (F5 ₁₆)		0	0	0	0	0	0	0	0	N/P	0	0	0	EXP 1	EXP 0	DSP 9	DSP 8
249	Data (F6 ₁₆)		0	0	0	0	0	0	0	0	EQP	PALH	MPAL	ALL 24	FSC	BLINK 2	BLINK 1	BLINK 0
250	Data (F7 ₁₆)		0	0	0	0	0	0	0	0	BLKHF	88	ВG	BR	1	PHASE 2	PHASE 1	PHASE 0
251	Data (F8 ₁₆)	Display ON	0	0	0	0	0	0	0	0	1	0	0	0	0	EX	BLK 1	BLK 0

Fig. 8 Example of data setting by the serial input function (M35012-XXXSP)

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

SERIAL DATA INPUT TIMING

At the M35013-XXXSP

- (1) Serial data should be input with the LSB first.
- (2) The address consists of 8 bits.
- (3) The data consists of 8 bits.
- (4) The 8 bits in the SCK after the $\overline{\text{CS}}$ signal has fallen are the address, and for succeeding input data, the address is incremented every 8 bits.

At the M35012-XXXSP

- (1) Serial data should be input with the LSB first.
- (2) The address consists of 16 bits.
- (3) The data consists of 16 bits.
- (4) The 16 bits in the SCK after the CS signal has fallen are the address, and for succeeding input data, the address is incremented every 16 bits.

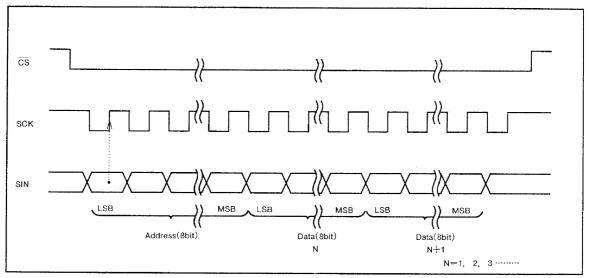


Fig. 9 Serial input timing (M35013-XXXSP)

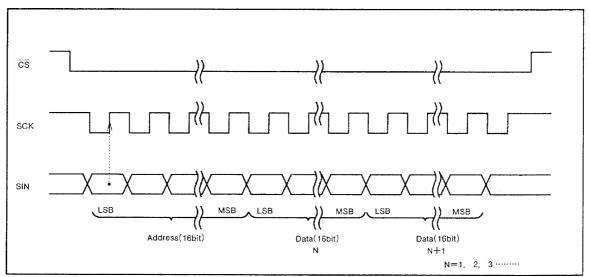


Fig. 10 Serial input timing (M35012-XXXSP)

M35012-XXXSP,M35013-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

CONT7F FUNCTION

When the register CONT7F (DA6 of address F8₁₆) is set to "1" and data input as the timing shown in Figure 11, the character code $7F_{16}^*$ (blank) can be set to display RAM automatically. However, be necessary to set the hold time. While this function is operating, never stop the display oscillation OSC1 and OSC2, and set the register STOP1 (DA5 of address F8₁₆) to "0".

*For M35012-XXXSP, the character code FF₁₆ (blank) can be set to display RAM automatically.

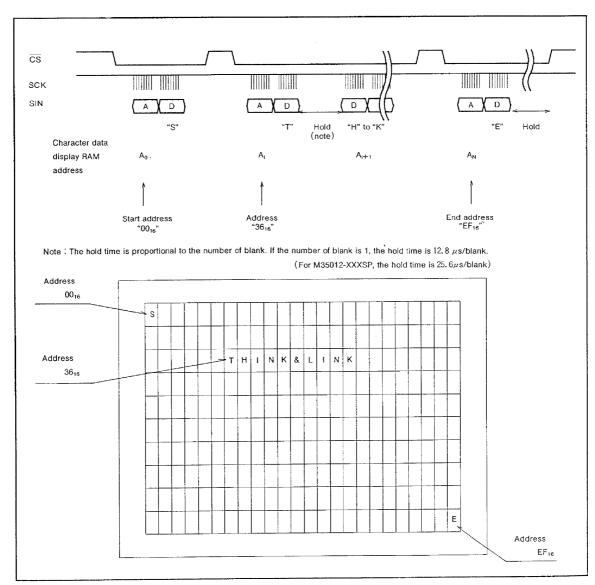


Fig. 11 CONT7F functional timing

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

TIME BASE (SYNCHRONOUS SIGNAL CORRECTION) FUNCTION

Time base function can correct the errors from the lost synchronous signal or disordered synchronization by a noise, using the reference clock fosc1.

The following are the correction method.

- (1) Time base 0-TBASE0 (DA6 of address $F1_{16}$)="1".
 - Cut-off a noise effect to synchronous signal.
 - Cut-off a noise during D period of Figure 12.
- (2) Time base 1-TBASE1 (DA7 of address $F1_{16}$)="1"
 - Correct the lost synchronous signal.
 - Generate the pulse if the synchronous signal has not input during C period of Figure 12. And stop to display the character till the next synchronous signal is input.

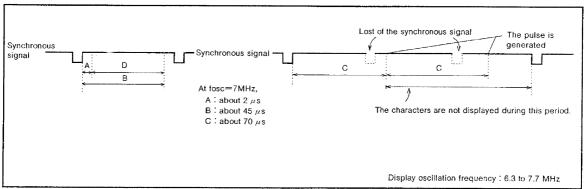


Fig. 12 Example of time base function

M35012-XXXSP, M35013-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

CHARACTER FONT

Images are composed on a 12 \times 18 dot matrix, and characters can be linked vertically and horizontally with other characters to allow the display the continuous symbols.

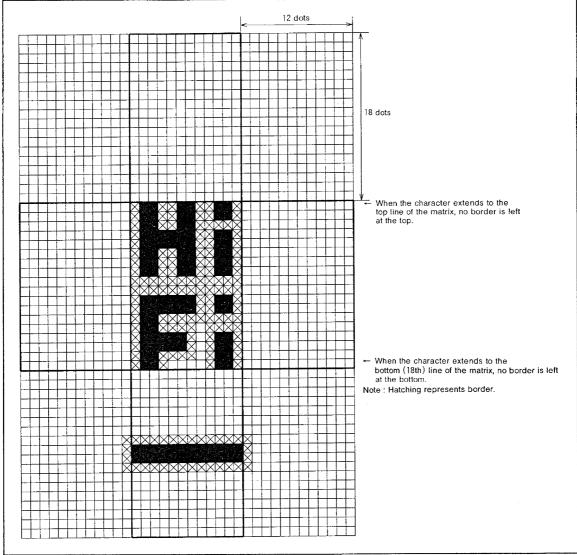


Fig. 13 Character font and border

Character code $7F_{16}$ is fixed as blank, without a background at the M35013-XXXSP.

Character code FF_{16} is fixed as blank, without a background at the M35012-XXXSP.

M35012-XXXSP,M35013-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

TIMING REQUIREMENTS ($T_a = -20^{\circ}\text{C}$ to $+70^{\circ}\text{C}$, $V_{DD} = 5 \pm 0.5 \text{V}$, unless otherwise noted)

Serial data input at the M35013-XXXSP

			Limits		Unit	Remarks	
Symbol	Parameter	Min.	Тур. Ма		Onit	Nemarks	
tw(SCK)	SCK width	200		_	ns		
t _{su(cs)}	CS setup time	200	_		ns		
th(cs)	CS hold time	2			μs	See Figure 14	
t _{su(sin)}	SIN setup time	200			ns	See Figure 14	
th(sin)	SIN hold time	200			ns		
tword	1 word writing time	5	_	<u> </u>	μs		

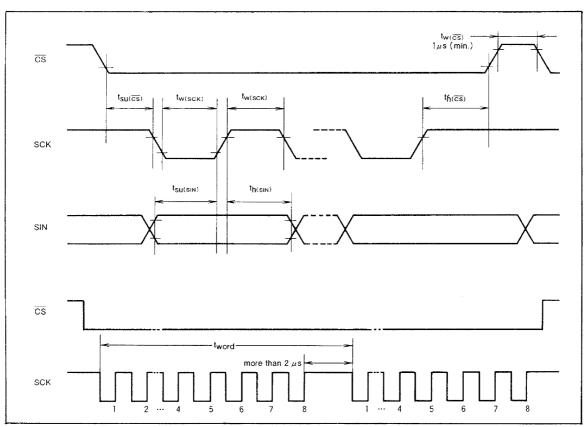


Fig. 14 Serial input timing requirements (M35013-XXXSP)

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

$\textbf{TIMING} \quad \textbf{REQUIREMENTS} \ \, (\textbf{T}_a = -20 \text{°C to } +70 \text{°C}, \textbf{V}_{\text{DD}} = 5 \pm 0.5 \text{V, unless otherwise noted})$

Serial data input at the M35012-XXXSP

Symbol	Parameter		Limits						
3,111201		Min.	Тур. Мах.		Unit	Remarks			
tw(SCK)	SCK width	200	_		ns	_			
t _{su(cs)}	CS setup time	200			ns				
th(cs)	CS hold time	2	_	_	μs				
t _{su(sin)}	SIN setup time	200	_		ns	See Figure 15			
t _{h(sin)}	SIN hold time	200		_	ns				
tword	1 word writing time	10		_	μs				

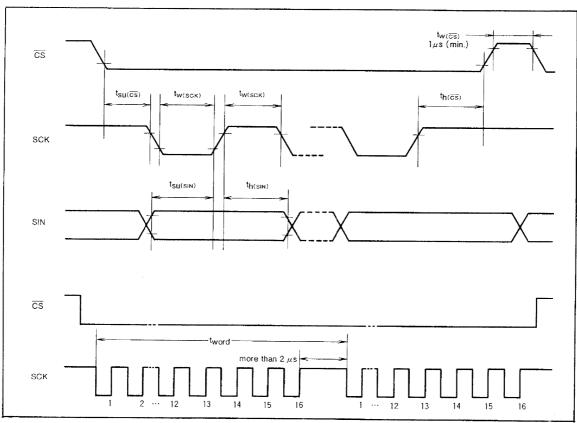


Fig. 15 Serial input timing requirements (M35012-XXXSP)

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{DD}	Supply voltage	With respect to Vss.	-0.3 to 6.0	V
V ₁	Input voltage		$V_{SS} = 0.3 \le V_{I} \le V_{DD} + 0.3$	V
Vo	Output voltage		V _{SS} ≦V _O ≦V _{DD}	V
Pd	Power dissipation	Ta=25°C	300	mW
Topr	Operating temperature		20 to 70	°C
Tstq	Storage temperature		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS (V_{DD} =5V, T_a =-20 to 70°C, unless otherwise noted)

Cumbal	Parameter		Limits		f lm ik
Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{DO}	Supply voltage	4.5	5.0	5.5	V
V _{IH}	"H" level input voltage SIN, SCK, CS, AC, HOR*, VERT*	0.8V _{DD}	VDD	VDD	V
VIL	"L" level input voltage SIN, SCK, CS, AC, HOR*, VERT*	0	0	0. 2V _{DD}	V
VCVIN	Composite-video signal input voltage CVIN		2V _{PP}		V
fosc1	Oscillating frequency for display	6.3	7.0	7.7	MHz
f _{oscin}	Oscillating frequency for synchronized signal	_	14. 30 14. 32 17. 73	_	MHz

ELECTRICAL CHARACTERISTICS ($V_{DD} = 5 \text{ V}, f_{OSC1} = 7.0 \text{MHz}, T_a = 25 ^{\circ}\text{C}, unless otherwise noted)$

Symbol	Parameter	Ttdiki		Limits				
	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
V _{DD}	Supply voltage	Ta=-20 to 70℃	4.5	5.0	5.5	V		
IDD	Supply current			_	20	mA		
VoH	"H" level output voltage, P0 to P3	V _{DD} =4.5V, 1 _{OH} =0.4mA	3. 5			٧		
Vol	"L" level output voltage, P0 to P3	V _{DD} =4.5V, I _{OL} =0.4mA	_	_	0.4	٧		
Rt	Pull-up resistance SCK, AC, CS, SIN,		10	30	100	kΩ		

VIDEO SIGNAL INPUT CONDITIONS ($V_{DD}=5V$, $T_a=-20$ to $70^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Test sanditions	Limits			Unit
		Test conditions	Min.	Тур.	Max.	Offic
V _{IN-SC}	Composite-video signal input clamp voltage	Sync-chip voltage	_	1.5	-	V

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

Note for Supplying Power

Timing of power supplying to \overline{AC} pin The internal circuit of M35012-XXXSP/M35013-XXXSP is reset when the level of the auto clear input pin \overline{AC} is "L". This pin is hysteresis input with the pull-up resistor. The timing about power supplying of \overline{AC} pin is shown in Figure

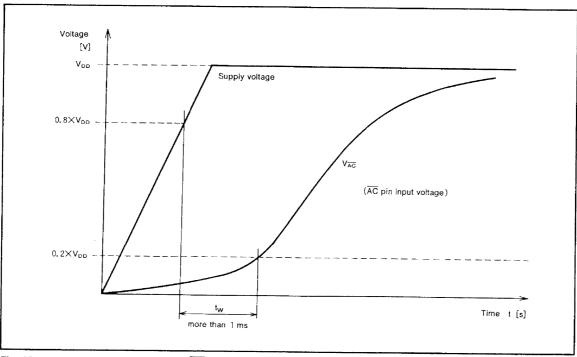


Fig. 16 Timing of power supplying to \overline{AC} pin

After supplying the power (V_{DD} and V_{SS}) to M35012-XXXSP/M35013-XXXSP and the supply voltage becomes more than 0.8 \times V_{DD} , it needs to keep V_{IL} time; tw of the \overline{AC} pin for more than 1ms.

Power supply timing about $V_{DD}1$ pin and $V_{DD}2$ pin.

The power need to supply to $V_{DD}1$ and $V_{DD}2$ at a time, though it is separated perfectly between the $V_{DD}1$ as the digital line and the $V_{DD}2$ as the analog line.

PRECAUTION FOR USE

Notes on noise and latch-up

In order to avoid noise and latch-up, connect a bypass capacitor ($\approx 0.1 \mu F)$ directly between the V_{DD} pin and V_{SS} pin using a heavy wire.

Ask your crystal oscillator manufacture to examine the matching conditions between this device and the crystal oscillator.

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

STANDARD ROM TYPE: M35013-001SP M35013-001SP is a standard ROM type of M35013-XXXSP. The input/output polarity and character patterns are fixed

to the contents of Table 3 and Figure 17 to 19.

Table 3 Input/output polarity of pins

Pin name	1/0	Polarity
HOR*	Input	Negative
VERT*	Input	Negative
P3(CO2*)	Output	Positive
P2(BLNK2*)	Output	Positive
P1(CO1*)	Output	Positive
P0(BLNK1*)	Output	Positive

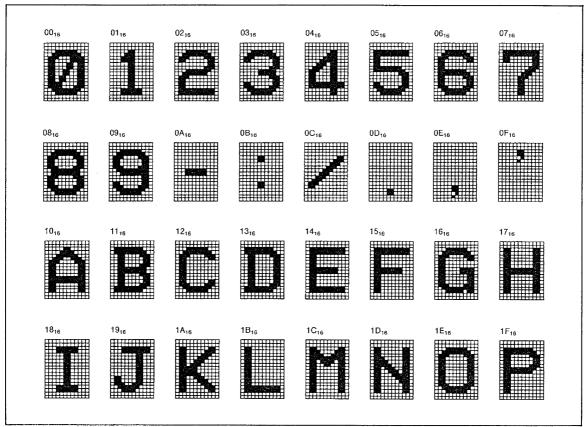


Fig. 17 M35013-001SP character patterns (1)

Fig. 18 M35013-001SP character patterns (2)

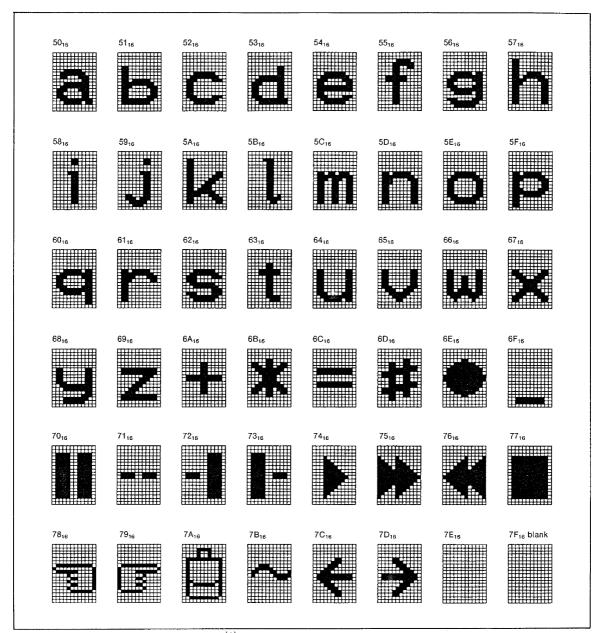


Fig. 19 M35013-001SP character patterns (3)

MITSUBISHI MICROCOMPUTERS

M35012-XXXSP,M35013-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

STANDARD ROM TYPE : M35012-001SP

M35012-001SP is a standard ROM type of M35012-XXXSP. The input/output polarity and character patterns are fixed to the contents of Table 4 and Figure 20 to 25.

Table 4 Input/output polarity of pins

Pin name	1/0	Polarity
HOR*	Input	Negative
VERT*	Input	Negative
P3(CO2*)	Output	Positive
P2(BLNK2*)	Output	Positive
P1(CO1*)	Output	Positive
P0(BLNK1*)	Output	Positive

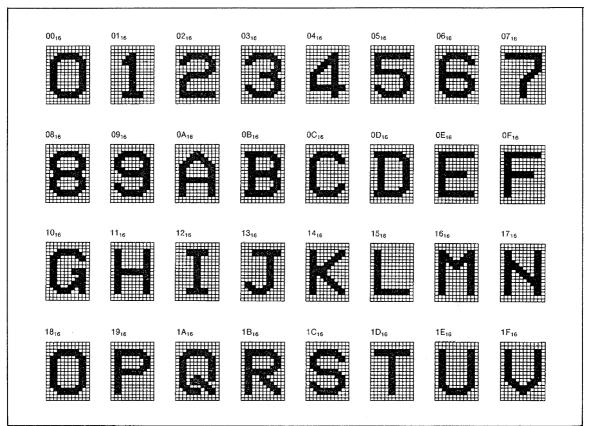


Fig. 20 M35012-001SP character patterns (1)

Fig. 21 M35012-001SP character patterns (2)

Fig. 22 M35012-001SP character patterns (3)

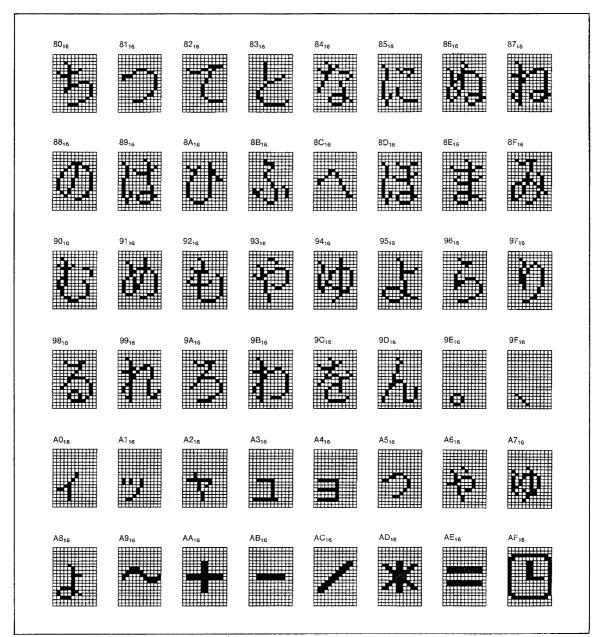


Fig. 23 M35012-001SP character patterns (4)

Fig. 24 M35012-001SP character patterns (5)

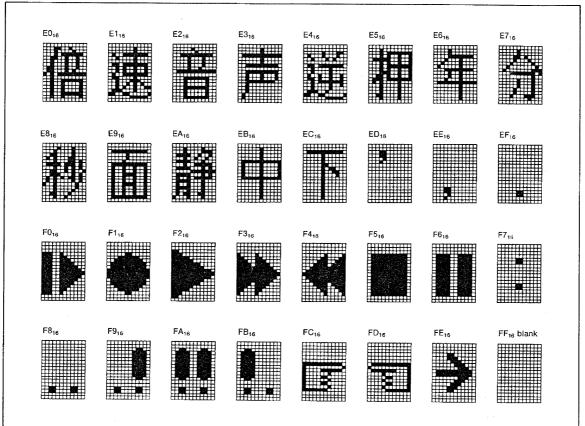


Fig. 25 M35012-001SP character patterns (6)